Így reformálja meg a gyártást a gépi tanulás

A gépi tanulás (machine learning) technológiájának hála a karbantartással, a minőségellenőrzéssel és az ellátási láncokkal felmerülő feladatok ellátása még ebben a kihívásokkal teli, globális környezetben is elvégezhető.

Swami Sivasubramanian, az AWS mesterséges intelligenciával és gépi tanulással foglalkozó területének alelnöke az Industry Week című szaklapban foglalt össze négy olyan területet, amiben a gépi tanulás komoly előrelépést hozott.

Megelőző karbantartás

Korábban a karbantartási munkálatok akár megelőző, akár utólagos jellegűek voltak, mindig költséges, és szinte sohasem hatékony eljárásnak számítottak. A legjobb megoldás viszont az, ha előre látjuk, mikor lesz szükség beavatkozásra, ezt pedig el tudjuk végezni olyankor, amikor egyébként is állnak a gépek.

A gépi tanulás alkalmazásai a különböző szenzoroknak hála lehetővé teszik ezt a módszert a gyártók számára. Sokszor már egy minimális rezgésváltozásból, vagy a hőmérséklet apró eltéréséből kiderül, hogy baj lesz, ezt pedig szenzorokkal szűrhetjük ki.

A hibák kiszűrése minél előbb

A gépi tanulás abban is segít, hogy a lehető leghamarabb észleljük a hibákat a gyártósorokon, így minimalizálhatjuk a selejtek számát. A számítógépes ellenőrzés során a hibákat gyorsan és hatékonyan észlelhetjük, ezzel még az előtt javítható a hiba – vagy legalább megállítható a gyártósor -, mielőtt selejt keletkezne. Korábban, csak a kész termékek ellenőrzésével ez nem volt lehetséges.

Működési hatékonyság

A szerző ide sorolja azokat a megoldásokat is, amik a működés hatékonyságát növelik azzal, hogy megmutatják az üzemeltetőnek az egyes gyártósorok, munkafolyamatok hibáit, leállásait. Az adatbázisok elemzésével rengeteg olyan pontot találhatunk, amik kijavításával hatékonyabbá válik a működés.

Előrejelzés az ellátási láncok optimalizálásáért

A mai ellátási láncok rendkívül összetett, komplex, globális rendszerek, amikben egy-egy láncszem kiesése vagy hibája is súlyos következményekkel járhat – erre jól rámutatott az elmúlt egy év és a koronavírus-járvány is.

A gépi tanulás itt különböző modellfuttatásokra használható, amik alapján meg lehet jósolni, mi fog történni a beszerzésekkel. Akár a chiphiány okozta károk enyhítésében is sokat segíthet egy ilyen alkalmazás, hiszen hamarabb alkalmazkodhat a termelés a kevesebb beérkező alapanyag mennyiségéhez, azelőtt, hogy az igazán nagy baj beütne.

Forrás: autopro.hu

Hozzászólások lezárva, de 1 | trackbacks és Pingbacks vannak nyitva.